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There has recently been speculation on whether or not chaotic synchronization might be useful for commu-
nications. One problem with using chaotic synchronization to communicate is that the response system is
nonlinear, so that any variation in the amplitude of the chaotic driving signal degrades the synchronization of
the response system to the drive system. In the present work, I show that it is possible to design a response
system that reproduces a scaled version of the chaotic driving signal when the drive signal is attenuated or
amplified. A simple communications system is demonstrated to show that the type of synchronization described
here is useful, and the effects of noise on the communications system are studied.

PACS number(s): 05.45.+b

I. INTRODUCTION

The synchronizing of chaotic systems that are coupled by
a one-way driving is a popular research topic, with much
speculation on possible applications to communications
[1-14] One problem in using a chaotic signal as an informa-
tion carrier is the problem of amplitude distortion, or fading.
Broadcasting a chaotic signal, for example, may result in
some attenuation between transmitter and receiver. Since the
response system that is driven by the transmitted chaotic
signal is nonlinear, changing the amplitude of the chaotic
driving signal with throw the response system out of syn-
chronization. A linear response system would not be sensi-
tive to the amplitude of the driving signal, but completely
linear response systems cannot be cascaded [3,4], so linear
systems require more than one signal to confirm synchroni-
zation.

The work described below shows how to build a simple
chaotic system so that the response system is not sensitive to
the amplitude of the driving signal, but is still nonlinear. I
also show that amplitude-independent chaotic systems may
still send and receive information.

II. THEORY OF SYNCHRONIZATION

The theory of the synchronization of chaotic systems is
described in detail elsewhere [2], so only a brief description
is included here. We begin with a dynamical system that may
be described by the ordinary differential equation

a(t)=f(a). (1)
The system is then divided into two subsystems,
a=(B,x);
B=2(B.x). )
X=h(B.x),
where B=(a,...,a,), g=(1(a), ... .fula)),
X:(aerl’ e ’an)7 and h:(fm+l(a')a e ?fn(a))~ The

division is truly arbitrary since the reordering of the «; vari-
ables before assigning them to B, x, g, and & is allowed.
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A first response system may be created by duplicating a
new subsystem x' identical to the x system, substituting the
set of variables B for the corresponding B’ in the function
h, and augmenting Egs. (2) with this new system, giving

B=g(B.x),
x=h(B.x). (3)
X' =h(B.x").

If all the Lyapunov exponents of the ' system (as it is
driven) are less than zero, then x'—y—0 as r—o. The
variable B is known as the driving signal.

One may also reproduce the B subsystem and drive it
with the x’ variable [3,4], giving

B=2(B.x),

X=h(B.x),

X' =h(B.x'), @
B'=g(B".x").

The functions # and g may contain some of the same
variables. If all the Lyapunov exponents of the x’, B8” sub-
system are less than 0, then B”— 8 as t— . The example of
Eq. (4) is referred to as cascaded synchronization. Synchro-
nization may be confirmed by comparing the driving signal
B with the signal B”.

III. AMPLITUDE-INDEPENDENT SYNCHRONIZATION

In the cascaded synchronization example of Eq. (4), every
part of the drive system is reproduced at least once. Since a
chaotic drive system requires some nonlinearity, there must
be at least one nonlinear element in the response system.
Changing the amplitude of the driving signal B will usually
destroy synchronization. In many types of communications
systems, transmitting the driving signal attenuates it by an
unknown amount. This attenuation will destroy synchroniza-
tion in a cascaded chaotic system. Oppenheim er al. [15]
remedy this problem by adaptively changing the amplitude
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of the driving signal. The work in the present paper describes
a nonadaptive way to maintain synchronization of chaotic
systems.

To maintain synchronization when the drive signal has
been attenuated (or amplified), the response system must
contain only scale-invariant nonlinearities, which are nonlin-
ear functions f(x) with the property f(Ax)=Af(x). A class
of nonlinear functions that have the scale-invariant property
consists of piecewise linear functions that have their only
breakpoint at 0. A piecewise linear function consists of two
or more line segments.

In order to build a chaotic system, scale-invariant nonlin-
earities may not be enough. In numerical and circuit experi-
ments, systems that contained an instability and no scale de-
pendent nonlinearity gave rise to unbounded motion; i.e., at
least one variable increased towards *=o. An amplitude-
dependent nonlinear function was necessary to fold the mo-
tion back into a bounded region. The amplitude dependence
may or may not be an actual requirement for a chaotic sys-
tem, but it was found to be a requirement for the systems
studied here.

Since the nonlinear folding function was amplitude de-
pendent, it could not be included in the response system, so
a full cascaded response system (which reproduces all parts
of the drive system) could not be built. On the other hand,
designing the nonlinear folding function so that the nonlinear
response system had some of the desirable properties of a
cascaded response system was possible. The nonlinear fold-
ing function produced the signal u, that drove the nonlinear
response system. The use of a function of a variable to drive
the response system was similar to the work of Kocarev and
Parlitz [10], in which the driving signal may be some func-
tion of the variables of the chaotic drive system. In the
present work, however, not all parts of the drive system were
reproduced in the response system, and the work in [10] did
not require amplitude-invariant nonlinearities. Since the non-
linear folding function is not reproduced in the response sys-
tem, it would be possible to have a completely linear re-
sponse system. A linear response system might not be
desirable because it might be possible to reconstruct the vari-
ables in the drive system using a series of integrators. Using
nonlinear functions in the response should make reconstruct-
ing the drive signals more difficult unless one had a copy of
the drive system.

IV. CIRCUIT EXAMPLE

The chaotic circuit described below fulfills all of the re-
quirements described in the preceding section. The nonlinear
folding function is g;(y), while amplitude-invariant nonlin-
earities are provided by g,(x) and g;(y). The equations for
the circuit are

dx
— == al0.05x+0.05g,(y) + 1.472 +0.15/],

dy

i af —0.5x—0.44g,(y)+0.147y],

dz
PP af[ —0.5g,(x)+z—0.5w],
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FIG. 1. (a) Graph of the function g(y) created by driving this
function in the circuit with a 10 Hz sine wave. The apparent noise is
caused by digitization errors. (b) Graph of g,(x) from the circuit.
(c) Graph of g;(y) from the circuit.

dw
E:_a[_10~083(81(y»+10.0W],
y=-—16, g,=—25y—-172,
g:1(y): —1.6<y<l1.6, g;,=2.0y,
1.6<y, g,=—25y+72,
x<0, g,=0,
: 5
g2(x) [x>0, 2,=45x, (%)
y<0, g3=4.5y,
g3(y): V>0, ga=0,
where the time factor a=10*s 1. § ; represents an informa-

tion signal that may be injected into the circuit. Kocarev and
Parlitz [10] also used signal injection method to encode in-
formation on a chaotic carrier. The piecewise linear functions
g1(y), g2(x), and g3(y) are shown in Figs. 1(a), 1(b), and
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FIG. 2. Chaotic attractor from the circuit.

1(c). These plots were generated by driving each function in
the circuit with a 10 Hz sine wave. Figure 2 is a chaotic
attractor from the circuit described by Eq. (5). The largest
Lyapunov exponent for this circuit was calculated numeri-
callly by the method of Eckmann and Ruelle [16] to be 765
s

A scaled version of g;(y) drove the response circuit. The
response circuit equations were

u;=Ag(y),

dx’
I — a(0.05x" +0.05u,+ 1.47z"),

d ’
—ZinZ—a(—O.Sx'—O.44ud+0.147y'), (6)
dz’
—=—a[—0.5g,(x")+z—0.5w"],
dt
dw'
T a[ —10.0g5(uy)+10.0w'],

where A is a scaling factor that may be greater or less than
1.0. The largest Lyapunov exponent for the response circuit
in the synchronized state, calculated numerically from Eq.
(6), was — 1470 s ~!, independent of the value of A.

Figure 3(a) confirms synchronization of the drive and re-
sponse circuits by showing y’ vs y from the circuit, for
A=1.0. When A isnot 1, y' is a scaled version of y, as may
be seen in Fig. 3(b), which shows y’ vs y when A=0.2.
Figure 4 shows the attractor for the response circuit when
A=0.5. The Fig. 4 attractor is just a scaled version of the
drive system attractor of Fig. 2.

V. COMMUNICATIONS

In order to send information from the drive to the re-
sponse, it is not enough merely to synchronize the y and
vy’ signals, because the y signal is not available at the re-
sponse. At the response system, the drive signal u, provides
all the information about the state system, and this signal
may be rescaled by an unknown amount. Comparing the
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FIG. 3. (a) y' signal from the response circuit vs y signal from
the drive circuit, showing synchronization, when the scaling factor
A from Eq. (6) is 1.0. (b) y' signal from the response circuit vs y
signal from the drive circuit when A=0.2, showing that y’ is a
scaled down version of y.

drive signal u, to the response output signal y' is enough to
confirm synchronization between the drive and response sys-
tems if the nonlinear folding function g,(y) is chosen prop-
erly. The folding function can be chosen so that for some
y=yo, Ag1(yo)=yo. For the g(y) defined in Eq. (5),
Ag(yo) =Yg is true for y,=0. Figure 5 is a plot of y' vs
u,; from the response circuit. The plot of Fig. 5 passes
through the origin, at which point y’=u,. Checking the
value of u,; when y’ crosses O tests for synchronization; if
u,=0 at this time, the systcins are synchronized. Comparing
uy to y’ only at zero crossings of y’ does limit the rate at
which information may be transmitted to the average rate of
0 crossings, about 2 kHz for the circuit of Eq. (5).

There are many ways to encode information on a chaotic
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FIG. 4. Chaotic attractor from the response circuit when the
scaling factor A from Eq. (6) is 0.5, showing that this attractor is a
scaled down version of the drive circuit attractor in Fig. 2.

carrier. In the present work, the information is added into the
dynamical system as the signal S; in Eq. (5). For the circuit
described by Eq. (5), adding information to a dynamical vari-
able did not have a large effect on the amplitude of the cha-
otic output signal u,.

An alternate method of encoding information would be to
modulate a parameter in the driving circuit. The main effect
of modulating a parameter in the drive circuit was to vary the
amplitude of u,. Because the response circuit was designed
to be insensitive to changes in the amplitude of u,, adding
information to a dynamical variable was a more efficient way
to encode a signal than parameter modulation. For other cha-
otic systems, parameter modulation may be more efficient.
Kocarev and Parlitz [10] have noted that it is difficult to
detect an injected information signal in the power spectrum
of the drive signal, and the same effect is seen in the present
work. The form of the information signal was
S;=2.0 sin(Q27f;t), where f;, the frequency of the informa-
tion signal, ranged from 5 to 200 Hz. The largest negative
Lyapunov exponent of the response system (— 1470 s h,
which governs how fast the response tracks a changing drive
signal, limits the maximum information frequency.

B
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FIG. 5. Output signal y’ from the response circuit vs the signal
that drives the response circuit u,, .
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FIG. 6. (a) Low frequency portion of the power spectrum of the
u, signal when a 30 Hz information signal has been injected into
the drive system as in Eq. (5). (b) Low frequency portion of the
detected signal A created by strobing the input to the response
circuit with the output, when a 30 Hz drive signal has been injected
into the drive system. Note the improvement in the signal to noise
ratio at 30 Hz.

In order to detect the information in the chaotic carrier
signal u,, the negative-going zero crossings of the signal
y' from the response circuit were used to strobe u,, gener-
ating a detected signal A. When the drive and response were
synchronized, u,; was zero when y’ was zero, so A was zero.
When the drive and response were not synchronized, then
u, was nonzero when y’ crossed zero, so A was nonzero. In
general, A was a complicated time series. If some parameter
in the drive system was changed by a small amount (or if a
small signal was injected into the drive system), then the
average of A was proportional to the parameter difference
between the drive and response systems (or the average of
A was proportional to the injected signal). If the information
frequency was much lower than the average rate at which
y' crossed zero, then A could also be used to detect the
information signal, since the information signal caused a lack
of synchronization. Passing A through a low pass filter (or a
band pass filter) had the effect of averaging A to reveal the
information signal. The signal to noise ratio for the detected
information signal was measured by taking a Fourier trans-
form of A and measuring the signal to noise ratio at the
information frequency.

Figure 6(a) is the low frequency portion of the power
spectrum for u,; when the scaling factor A= 1.0 and the in-
formation frequency f;=30 Hz. The signal to noise ratio at
the information frequency was measured by subtracting the
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average signal power (in dB) within 2 Hz of f; (not including
f) from the signal power at f;. The signal to noise ratio for
Fig. 6(a) was 4 dB, almost 20 dB lower than the signal to
noise ratio in the detected signal (below).

Figure 6(b) is the low frequency portion of the power
spectrum of the detected signal A for f,=30 Hz. The signal
to noise ratio at the information frequency was 23 dB. When
the scaling factor A was 0.5, the signal to noise ratio at the
information frequency was still 22 dB. For a small enough
A, the signal to noise ratio will degrade due to circuit mis-
match and noise.

Injecting the information signal into the chaotic drive sys-
tem appears to be a particularly efficient way of encoding
information for detection by an amplitude-independent re-
sponse system. For the circuit of Eq. (5), it is easy to see how
different encoding methods affect the detection process. In
Fig. 5, the point where the y' vs u, curve crosses zero lies
along the line AB. Injecting an information signal into the
drive circuit makes the y’ vs u, curve move perpendicular to
the line AB, so signal injection produces the largest possible
change in the zero crossing points of y’ and u,. The main
effect of modulating a parameter in the drive circuit is to
stretch the y’ vs u, curve along the line AB. Because pa-
rameter modulation causes a change mostly along the line
AB, y' and u, still cross zero at almost the same time, pro-
ducing only a small detected signal A. The effects of differ-
ent types of signal encoding are system dependent; for the
circuit described by Eq. (5), the fact that the different types
of signal encoding move the plot of y’ vs u, in different
directions might be useful for sending multiple information
signals on one chaotic signal.

VI. NOISE AND FILTERING

In order to be useful for communications, the response
circuit must not be too sensitive to noise. The two types of
noise that were considered here were additive deterministic
noise near the chaotic carrier frequency and low frequency
additive noise.

The most difficult type of noise to separate from a chaotic
carrier signal should be a signal from another chaotic system
with a similar frequency spectrum. Figure 7(a) is the power
spectrum of the chaotic driving signal u, from the circuit of
Eq. (5). Figure 7(b) is the power spectrum of a contaminat-
ing signal [the ¢ signal in Eq. (7)] from a Rossler circuit [17]
described by the equations
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FIG. 7. Power spectrum of the u, signal from the chaotic drive
circuit described by Eq. (5). (b) Power spectrum of the ¢ signal
from the Rossler circuit described by Eq. (7). The i signal was
added to u, as a contaminating signal.

where the time factor a=10* s~!, I'=0.05, B=0.5,
A=1.0, y=0.133, and w=15. The ¢ signal was added to
u, so that the rms amplitude of ¢ was up to 1.4 times the
rms amplitude of u, (a signal to noise ratio of — 1.5 dB).

When the contaminating signal ¢ was added to u,, an
information frequency f; of 10 Hz was used. Lower infor-
mation frequencies improve the signal to noise ratio in the
detected signal A because each cycle of the information sig-
nal is averaged over more zero crossings of y’'. When f; was
10 Hz and the transmitted signal u, was 1.5 dB below the
contaminating signal ¢, the signal to noise ratio of the infor-
mation in the detected signal A was 15 dB (with no added
noise the signal to noise ratio for A was 26 dB). The signal
to noise ratio decreased rapidly for larger amplitudes of the
contaminating signal. Recovery of the information signal is
possible when a contaminating signal is present because the
contaminating signal ¢ is generated by a chaotic system that
is not too similar to the drive system of Eq. (5). Part of the
output signal y’ from the response circuit is caused by .
This part of y’ is not correlated with ¢ (unless the contami-
nating signal is large enough to substantially alter the dy-
namics of the response circuit). The part of y’ due to ¢ will
not contribute to the average of the detected signal A, so a
low amplitude contaminating signal does not prevent infor-
mation transmission. The same type of signal detection has
been demonstrated before [18,19].

Low frequency noise has a more drastic effect on infor-
mation recovery because it cannot be averaged away. Filter-
ing can remove low frequency noise since the chaotic signal
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u,; contains little power at low frequencies. An SR-560
preamp set to have a gain of 1 was used as a high pass filter
that rolled off frequencies below 300 Hz at 12 dB/octave.
The signal u, (with an information frequency of 10 Hz)
passed through the high pass filter before driving the re-
sponse system. The high pass filter did not have much effect
on u, except that it removed a dc bias in u,. The dc error
could be corrected for in an adaptive fashion by adding a
variable dc bias to u, after the filter and adjusting the bias to
optimize the match between y’ and the filtered version of
u,. When the adaptive bias was used, no loss in signal to
noise ratio for the filtered signal was seen; the ratio after
filtering vs 27 dB, compared to a ratio of 26 dB without
filtering. If no bias adjustment was used, the signal to noise
ratio was 19 dB. Presumably the high pass filtering is pos-
sible because the injected information signal frequency is
mixed with the other frequencies in the chaotic attractor, so
that information is carried in a continuous band of inter-
modulation frequencies. An engineering analogy would be
shifting up the frequency of an information signal by com-
bining it in a nonlinear fashion with a higher frequency car-
rier. The chaotic response circuit then serves as a demodula-
tor, recovering the information signal.

VIL. CONCLUSIONS

Unknown amplitude variations in the amplitude of a cha-
otic driving signal need not be a problem when communicat-
ing with synchronized chaos. There are still other types of
distortion that may disrupt chaotic communications signals,
but the large variety of nonlinear systems that may be de-
signed suggests that it may be possible to overcome other
problems as well.

Amplitude-independent chaotic synchronization may be
used to transmit information, even in the presence of large
amounts of noise. Not only is communication in the presence
of noise necessary for practical use, it also offers some ad-
vantage in shielding signals from eavesdroppers. It is pos-
sible to extract messages from chaotic signals by estimating
some part of the message-free chaotic signal [20,21]. Short
[20] was able to separate periodic signals from chaotic sig-
nals, but he found that it was harder to separate chaotic sig-
nals from other chaotic signals. Adding chaotic noise to a
chaotic carrier signal might make estimating the chaotic sys-
tem dynamics more difficult, making it harder to extract the
message.

[1]L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821
(1990). .

[2] L. M. Pecora and T. L. Carroll, Phys. Rev. A 44, 2374 (1991).

[3] T. L. Carroll and L. M. Pecora, Physica D 67, 126 (1993).

[4] K. M. Cuomo, A. V. Oppenheim, and S. H. Strogatz, IEEE
Trans. CAS 40, 626 (1993).

[5] K. M. Cuomo and A. V. Oppenheim, Phys. Rev. Lett. 71, 65
(1993).

[6] L. O. Chua, L. Kocarev, K. Eckart, and M. Itoh, Int. J. Bifurc.
Chaos 2, 705 (1992).

[7] H. Dedieu, M. P. Kennedy, and M. Hasler, IEEE Trans. CAS
40, 634 (1993).

[8] R. He and P. G. Vaidya, Phys. Rev. A 46, 7387 (1992).

[9] L. Kocarev, K. S. Halle, K. Eckert, L. O. Chua, and U. Parlitz,
Int. J. Bifurc. Chaos 2, 709 (1992).

[10] L. Kocarev and U. Parlitz, Phys. Rev. Lett. 74, 5028 (1995).

[11] K. Murali and M. Lakshmanan, Phys. Rev. E 48, 1624 (1993).

[12] K. Pyragas, Phys. Lett. A 181, 203 (1993).

[13] N. F. Rul’kov, A. R. Volkovski, A. Rodriguez-Lozano, E. Del-
Rio, and M. G. Velarde, Chaos Solitons Fractals 4, 201 (1994).

[14] M. d. S. Viera, A. J. Lichtenberg, and M. A. Lieberman, Phys.
Rev. A 46, R7359 (1992).

[15] A. V. Oppenheim, K. M. Cuomo, R. J. Barron, and A. E.
Freedman, Proceedings of the Third Technical Conference on
Nonlinear Dynamics and Full Spectrum Processing, edited by
R. A. Katz (AIP Press, New York, 1995).

[16] J.-P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617 (1985).

[17] T. L. Carroll, Am. J. Phys. 63, 377 (1995).

[18] T. L. Carroll, Phys. Rev. E 50, 2580 (1994).

[19] T. L. Carroll, IEEE Trans. CAS 42, 105 (1995).

[20] K. M. Short, Int. J. Bifurc. Chaos 4, 959 (1994).

[21] G. Perez and H. A. Cerdeira, Phys. Rev. Lett. 74, 1970 (1995).



